Deep learning
ECTS Maths : 3 ECTS Info : 2 Cours de Période 2
- Teacher Stéphane Gaïffas
- Website of the course https://stephanegaiffas.github.io/deep_learning/
- Link to the course's Moodle
- Prérequis
- Modalités de validation du cours Contrôle continu
- Volume horaire du cours 2h de cours + 1h de travaux pratiques par semaine
- Durée 10 semaines
Syllabus
- Entrainement et usage des réseaux de neurones profonds
Sommaire
- Introduction to Deep Learning
- Forward and backward propagation and solvers
- Embeddings, matrix factorization, factorization machines and recommender systems
- Convolutional neural networks for image classification
- Network architectures for object detection and image segmentation
- Recurrent neural networks, Long Short-Term Memory (LSTM) units for learning based on sequences
- Learning for sequences to sequences, attention and memory
- Unsupervised deep learning and generative models
Bibliographie
- Goodfellow, I. and Bengio, Y., and Courville, A. (2016). Deep Learning. MIT Press.
- Chollet, F. and Allaire, J. J. (2018). Deep Learning with R. Manning Pub.
- Chollet, F. and Allaire, J. J. (2018). Deep Learning with Python. Manning Pub.